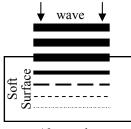
Period:

Damping


No motion can last forever. A pendulum will eventually stop swinging due to air friction. A wave will eventually lose its energy as well. Friction or the restoring force eventually causes the motion to lose its energy and to die out. This gradual reduction of amplitude we call *damping*.

Boundary Reactions

There are four ways a wave can react depending on the boundary it encounters: Absorption; Reflection; Refraction; Diffraction.

Soft Boundaries Absorb

Absorption—a wave's energy dies out in a soft material (damping). Example: Yelling into a pillow. The soft pillow absorbs the sound.

Absorption

Hard Boundaries Reflect

Reflection—a wave bounces off when it hits a hard boundary. Example: When you yell against a wall, the sound wave reflects off of the wall.

We call sound that is reflected back to us echoes. Many animals use echolocation to see through dark water or at night! An animal makes a noise and uses the echo to figure out where an object or prey is located.

Humans use echolocation, too, in sonar (submarines using sound waves), radar (airports using light waves), and sonograms (sound waves to see inside soft parts of the human body).

Natural Frequency

All objects have a *natural frequency*—the frequency that they vibrate at when disturbed. Musical instruments easily show natural frequencies, but most other objects have them, too: bridges, buildings, etc.

Resonance is the reinforcing of an object's natural frequency so that the amplitude increases quickly. Harmonics show resonance. If you have ever been talking in a bathroom and notice that certain notes are very loud-that's resonance: that loud note is the natural frequency of that room. Resonance is how a soprano can break a glass with her voice.

motion over time until it has stopped (returned to its equilibrium position).

Diffraction

on

This graph shows the damping of harmonic

Corners Diffract

Diffraction-part of a wave bends around a corner. This is partially how we hear around corners and

how some light can be seen around corners. What happens is the corner drags the wave slowing it down and turning it.

Example: talking to someone around a corner.

Light diffracts. **PROVE IT**: Put your hand up to your eye. Look between two of your fingers. As you close your fingers together you see "lines" - almost like your skin is "jumping the gap." These dark lines are where two diffracted light waves are canceling each other out to produce darkness. How do they cancel each other out? By destructive interference: see back page.

Transparent Boundaries Refract

Refraction— a wave bends when entering a transparent boundary. Example: Light going into water bends toward the water. Light also bends going through the lenses of eyeglasses to magnify objects.

Refraction

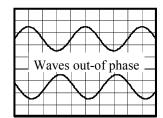
lens

Phase

In-phase

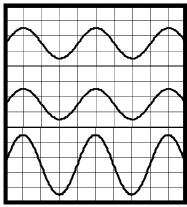
Waves in-phase

Phase—a particular part of a cycle.


In-phase means they are at the same point in their cycles.

Out-of-phase means they are at different *points* in their cycles.

180° out-of-phase



Copyright © 2004, C. Stephen Murray

Interference

When two waves interact they interfere with each other.

Constructive Interference—when **two waves** combine to **cause a larger wave** of greater amplitude, like pushing on a person on a swing when they are moving away from you: you give them energy.

Two smaller waves (lesser amplitude) that are *inphase constructively interfere* to create one larger wave of greater amplitude.

Two singers on the same note cause a louder sound—constructive interference. **Destructive Interference**—when **two waves** combine to **cause a smaller wave** of smaller amplitude. Pushing on a person on a swing as they are going toward you (at the wrong time) causes the amplitude to die out.

Two waves that are *out-ofphase destructively interfere* to create a smaller wave of lesser amplitude. They **cancel** each other out.

Modern headphones (and cars) have *noise-canceling technology* that transmits out-of-phase waves toward noise, canceling them out.

	4	
1. Phase	A. The process of harmonic motion losing amplitude over time.	1. Absorption A. When a wave bends at a corner.
2. In-phase	B. When two waves increase amplitude.	 2. Refraction 3. Diffraction B. The frequency that an object has when disturbed.
 Out-of-phase Damping Constructive interference Destructive interference 	C. A single part of a cycle.D. When two waves decrease amplitude.E. When two waves are at different parts of their cycles.F. When two waves are at the same part of	 4. Reflection 5. Echolocation 6. Natural Frequency C. A method of using sound instead of eyes. D. When a wave is dampened inside a soft boundary. E. When a force reinforces the natural fre- quency of an object. F. A wave bouncing off of a hard boundary.
	their cycles.	7. Resonance G. A wave bending inside transparent objects.
Draw what will happen to the wave as it goes through the hole.		Absorption, Reflection, Refraction, or Diffraction?
	What do we call this?	If a wave hits a hard wall, it bounces off by: If a wave hits a soft boundary, it dies by: A wave bends around a corner by:
Match the pendulums that are in-phase.		A wave bends inside a boundary by:
	B. $C.$ $D.$ $D.$	Carpet can keep a room quiet by:
		Tile or marble makes for a loud room by:
		Eyeglasses magnify objects by:
		Dark lines between your almost closed fingers by:
E. F	G. G. H.	Light comes back from a mirror by:
		A string with a natural frequency of 15 Hz will likely show resonance at which frequencies: (could be more than one)
Which one is 180° out-of-phase of E? With H?		A) 20 Hz; B) 30 Hz; C) 40 Hz; D) 50 Hz; E) 60 Hz
Which one is 90° out-of phase of F? with G?		What other frequencies would show resonance?