SPRING CONSTANT LAB HOOKE'S LAW

OBJECTIVE

To determine the spring constant (k) of an elastic substance (spring, rubber band, etc) to use to calculate the Elastic Potential Energy

PROCEDURE

- 1. Attach a spring to the apparatus as instructed along with the mass holder.
- 2. Adjust the indicator to zero on the scale or measure in meters from a fixed point (table top) to bottom of mass holder. Record this as Initial Length (L_i)
- 3. Place a known mass on the mass holder and record the new distance either by the indicator or measuring up from the table top. Record as Final Length (L_f)
- 4. Calculate the force created by the mass (F = m g where m is in kg and $g = 9.8 \text{ m/s}^2$) Record this as Force (F).
- 5. Subtract the two lengths $L_f L_i$ and record as Δx in meters.
- 6. Calculate the spring constant for that particular spring or elastic piece by

Using this formula. $F = k \Delta x$ solve for k; $k = F / \Delta x$

The unit for k will be N/m (newtons per meter)

Data Table

Elastic piece	L_{f}	$\mathbf{L_{i}}$	Δx	mass	F	k
		N ₂	-	*		
			_			
						Α