Sou	und Waves
O	n an experiment for measuring the speed of sound, a gun was shot 715 m away from the bserver. It was heard 2.13 seconds after the flash was seen. What was the speed of sound in at that time?
b	ound travels at 1530 m/s in sea water. A signal sent down from a ship is reflected at the ottom of the ocean and returns 1.35 s later. Assuming the speed of sound was not affected y changes in the water, how deep was the ocean at that point?
Si Si	A train at rest blows a whistle to alert passengers that it is about to depart from a subway tation. The pitch of this whistle is 1.14×10^4 Hz. The speed of sound in the air in that ubway tunnel is 342 m/s. The speed of sound in iron is 5130 m/s. What is the wavelength of that sound in the air?
b	. What is the distance between consecutive areas of compression and of rarefaction in the spherical sound waves spreading from the whistle in the air?
c	Assuming that the sound was loud enough to be heard from the end of the 1200 m long tunnel, when was it heard through air? through the rails?
d	. What was the apparent frequency of the sound waves that reached the end of the tunnel?
e	. As the train left the station, did the frequency appear to change for a listener on the platform? inside the train? at the other end of the tunnel?

Name: ______ Date: _____

	tar string has a fundamental t		
b. In the space belo	w, draw the standing wave p	attern for the first, the secon	d, and the third
harmonics, show	ing the nodes and the antinoo	les on the string.	
c. What should be t	the string's length in order to	produce a fundamental note	of 333 Hz?
2. The first harmonic	the string's length in order to frequency of a violin string is monic frequencies (overtone	s 440 Hz.	of 333 Hz?
2. The first harmonic a. Find the next har b. The intensities of	frequency of a violin string is	s 440 Hz. s) of this string. nics are about half that of the	e fundamental
2. The first harmonic a. Find the next har b. The intensities of	frequency of a violin string is monic frequencies (overtone of the second and third harmon the of each wave and a graph	s 440 Hz. s) of this string. nics are about half that of the	e fundamental
2. The first harmonic a. Find the next har b. The intensities of one. Sketch a gra	frequency of a violin string is monic frequencies (overtone of the second and third harmon the of each wave and a graph	s 440 Hz. s) of this string. nics are about half that of the	e fundamental
2. The first harmonic a. Find the next har b. The intensities of one. Sketch a gra	frequency of a violin string is monic frequencies (overtone of the second and third harmon the of each wave and a graph	s 440 Hz. s) of this string. nics are about half that of the	e fundamental