Projectile Motion Notes

Projectile- defined as an object or mass traveling through space without the aid of an engine or self initated power. Exp. Baseball, football, golf ball, tennis, volleyball, projectile vomiting.

A projectile's path is the shape of a parabola first identified by Galileo.

Its path has motion in the x axis and in the y axis.

Motion in the x axis has no effect on motion in the y axis. They are independent motions.

The kinematic equations apply but are written in respect to the axis of travel.

Moving in the x axis

$$\frac{\Delta x}{\Delta x} = \frac{1}{2} (v_{fx} + v_{ix}) \Delta t$$

$$\Delta x = v_{ix} \Delta t + \frac{1}{2} a_x (\Delta t^2)$$

$$v_{fx} = v_{ix} + a_x \Delta t$$

$$v_{fx}^2 = v_{ix}^2 + 2 a_x \Delta x$$

where:

 v_{ix} = horizontal velocity initially a_x = horizontal acceleration

 v_{fv} = vertical final velocity

Moving in the y axis

$$\Delta y = \frac{1}{2} \left(v_{fv} + v_{iv} \right) \Delta t$$

$$\Delta y = v_{iv} \Delta t + \frac{1}{2} g (\Delta t^2)$$

$$v_{fy} = v_{iy} + g \Delta t$$

$$v_{fy}^{2} = v_{iy}^{2} + 2 g \Delta y$$

 v_{fx} = horizontal velocity final v_{iv}= vertical initial velocity

 $g = acceleration due to gravity -9.8 m/s^2$

 Δx = change in horizontal displacement Δy = change in vertical displacement

HORIZONTALLY LAUNCHED PROJECTILES

- 1. to find time in motion, use $\Delta y = v_{iy}\Delta t + \frac{1}{2} g \Delta t^2$ where $v_{iy}=0$ and solve for time Δt
- 2. to find the distance from base or Δx , use $\Delta x = v_{ix} \Delta t + \frac{1}{2} a_x \Delta t^2$ where $a_x = 0$
- 3. to find how high or tall something is use $\Delta y = v_{iy} \Delta t + \frac{1}{2} g \Delta t^2$ where $v_{iy}=0$ and you have to have time or calculate it. Possibly $\Delta t = \Delta x / v_{ix}$
- 4. to find horizontal velocity. $V_{ix} = \Delta x / \Delta t$

PROJECTILES LAUNCHED AT AN ANGLE

- 1. If the velocity is given vo and the angle, find the horizontal and vertical velocity components using trig.
- 2. To solve for time of flight, assume that $v_{fy} = -v_{iy}$, use $v_{fy} = v_{iy} + g \Delta t$ and solve for $\Delta t = -2 v_{iy} / g$ or if landing at different elevations, Use the quadratic formula $ax^2 + bx$ + c = 0 or $x = -b \pm \sqrt{b^2 - 4ac}$ / 2a where $x = \Delta t$, $a = \frac{1}{2}$ g, and $b = v_{iy}$. 3. To solve for maximum height, assume $v_{fy} = 0$ at top, use $v_{fy}^2 = v_{iy}^2 + 2$ g Δy , solve
- 4. To solve for total horizontal distance, Δx or Range, use $\Delta x = v_{ix} \Delta t$ or only on a level surface use Range (R) = $v_0^2 \sin 2 (\Theta) / g$ where g is the absolute value, no negative.

Name:	

Projectile Practice HORIZONTALS

- 1. A stone is thrown horizontally at 15m/s from the top of a cliff 44 m high.
 - a. How long does the stone take to reach the bottom of the cliff?
 - b. How far from the base of the cliff does the stone strike the ground?
- 2. A physics book is thrown horizontally at a velocity of 10.0 m/s from the top of a cliff 78.4 m high.
 - a. How long does the stone take to reach the bottom of the cliff?
 - b. How far from the base of the cliff does the stone strike the ground?
- 3. Wyle E. Coyote is now in the real world. He goes running off a cliff and becomes a human projectile. It takes him 12.5 seconds to hit the bottom of the canyon. He falls to his cartoon death and lands 82 m from the wall of the canyon.
 - a. How far did he fall? (Or how high is the cliff?)
 - b. What was is cartoon velocity as he ran horizontally off a cliff?
- 4. The longest shot on a golf tournament was made by Mike Austin in 1974. The ball went a distance of 471 m. Suppose the ball was shot horizontally off a cliff at 80.0 m/s. Calculate the height of the cliff.
- 5. A movie director is shooting a scene that involves dropping s stunt dummy out of an airplane and into a swimming pool. The plane is 10.0 m above the ground, traveling at a velocity of 22.5 m/s in the positive x direction. The director wants to know where in the plane's path the dummy should be dropped so that it will land in the pool. What is the dummy's horizontal displacement?

ANGLES

- 1. A player kicks a football from ground level with a velocity of magnitude 27.0 m/s an angle of 30.0° above the horizontal.
 - a. What is it "hang-time?"
 - b. How far does the ball travel before it hits the ground?
 - c. What is the maximum height the ball reaches?
- 2. A kicker now kicks the football with the same velocity, but at 60° from the horizontal.
 - a. What is it "hang-time?"
 - b. How far does the ball travel before it hits the ground?
 - c. What is the maximum height the ball reaches?
- 3. The narrowest strait on earth is Seil Sound in Scotland, which lies between the mainland and the island of Seil. The strait is only about 6.0 m wide. Suppose an athlete wanting to jump "over the sea" leaps at an angle of 35° with respect to the horizontal. What is the minimum initial speed that would allow the athlete to clear the gap? Neglect air resistance.
- 4. In 1993, Wayne Brian threw a spear a record distance of 201.24 m. (This is not an official sport record because a special device was used to "elongate" Brian's hand.) Suppose Brian threw the spear at a 35.0° angle with respect to the horizontal. What was the initial speed of the spear?