


Name	 	
Date	 	
Period		

Purpose – To investigate projectiles fired at angles. An object is fired at a speed of 14 m/s at three different angles.

Launch the Projectile Motion simulation. http://phet.colorado.edu/en/simulation/projectile-motion

Adjust the speed to 14 m/s then fire three projectiles at 30°, 50° and 70°. Keep all other initial conditions as given.

- 1. Identify the trajectories in the chart below on the diagram to the right as v₁, v₂ or v₃.
- 2. Resolve each of the velocity vectors into horizontal and vertical components.
- 3. Rank the time of flight for each velocity.

Velocity	Horizontal Component	Vertical Component	Time of Flight
v ₁ = 14 m/s at 30°			
v ₂ = 14 m/s at 50°			
v ₃ = 14 m/s at 70°			

Below are freeze-framed pictures of the projectile at various times in its trajectory. Circle one of the three choices, \uparrow (increasing), \downarrow (decreasing), or zero that describes the projectile's **vertical (Y) motion**. Ignore air resistance.

v ₁ while	ascending	<u>V</u> 2	at the apex	<u>v₃ whi</u>	le descending
•	v: ↑ ↓ zero a: ↑ ↓ zero	•	v: ↑ ↓ zero a: ↑ ↓ zero	•	v: ↑ ↓ zero a: ↑ ↓ zero

Below are freeze-framed pictures of the projectile at various times in its trajectory. Circle one of the three choices, \uparrow (increasing), \downarrow (decreasing), zero, that describes the projectile's **horizontal (X) motion**. Ignore air resistance.

<u>v₁ while as</u>	cending	v ₂ at the a	<u>apex</u>	v_3 while descending
v: ↑ ↓ zero a: ↑ ↓ zero	•	v: ↑ ↓ zero a: ↑ ↓ zero	•	↓ zero ↓ zero

	s: changing/zero and points anging/zero and points				
· · · · · · · · · · · · · · · · · · ·	its: changing/zero and points anging/zero and points				
•	its: changing/zero and points anging/zero and points				
What ties the horizontal and vertical equations of motion together?					
Adjust the cannon's position until the horizon (ground level). Fire a horizontal. Calculate the time of fl height of the projectile. Use the ta	projectile at 14 m/s at 40° above thight, the range and the maximum	ne +			
All measurements will be made wi					
Time of Flight	<u>Range</u>	<u>Height</u>			

Left click on the cannon and hold. Adjust the vertical elevation of the cannon. Fire another projectile at 14 m/s at 40° above the horizontal. How does the vertical elevation affect the time of flight, the range and height of the projectile?

time = 1.84 seconds