Power
Mr. Drouet

OBJECTIVES

- Define Power.
- Calculate the power of a system.

What is Power?

- Power is the rate at which work is done.

$$
P=\frac{W}{t}=\frac{F \cos \theta \bullet d}{t}=\frac{m g d}{t}
$$

- Units are Joules/second, Watts (W)
- It is possible to do the same amount of work, but have different power outputs, if time is different.

SAMPLE PROBLEM 1

- Myra and Cedric move a sofa 3 meters across the floor by applying a combined force of 200 N horizontally. If it takes them 6 seconds to move the sofa, what amount of power did they supply?

SAMPLE PROBLEM 2

- Cedric then pushes the same sofa 3 meters across the floor by applying a force of 200 N . Cedric, however, takes 12 seconds to push the sofa. What amount of power did Cedric supply?

Alternate Power Calculations

$$
P=\frac{W}{t}=\frac{F d}{t}=F \cdot v
$$

SAMPLE PROBLEM 3

- Motor A lifts a 5000 N steel crossbar upward at a constant $2 \mathrm{~m} / \mathrm{s}$.
- Motor B lifts a 4000 N steel support upward at a constant $3 \mathrm{~m} / \mathrm{s}$
- Which motor is supplying more power?

SAMPLE PROBLEM 4

- A 70-kilogram cyclist develops 210 watts of power while pedaling at a constant velocity of 7 meters per second east. What average force is exerted eastward on the bicycle to maintain this constant speed?

GET READY FOR LAB

-Lab: Get into groups of 3-4 and begin the Strongman Competition Lab!

- Convert your weight now.
- 1 pound $=4.45$ Newtons

