Worksheet Z1 - Newton's Law of Universal Gravitation

1) Two students are sitting 1.50 m apart. One student has a mass of 70.0 kg and the other has a mass of 52.0 kg. What is the gravitational force

between them?
$$F_g = \frac{GMm}{r^2}$$

$$= \frac{(6.67 \times 10^{-4})(70.0)(52.0)}{(1.50)^2}$$

$$= 1.08 \times 10^{-7} N$$

2) What gravitational force does the moon produce on the Earth is their centers are 3.88x10⁸ m apart and the moon has a mass of 7.34x10²² kg?

$$\frac{F_g = \frac{G Mm}{r^2} = \frac{(6.67 \times 10^{-11})(5.98 \times 10^{24})(7.34 \times 10^{22})}{(3.88 \times 10^4)^2} = \sqrt{1.94 \times 10^{20} N}$$

3) If the gravitational force between objects of equal mass is 2.30x10⁻⁸ N when the objects are 10.0 m apart, what is the mass of each object?

$$f_{g} = \frac{GMm}{r^{2}} \qquad M = m$$

$$f_{g} = \frac{Gm^{2}}{r^{2}}$$

$$m = \int \frac{f_{g}r^{2}}{G} = \int \frac{(2.30 \times 10^{-8})(10.0)^{2}}{6.67 \times 10^{-11}}$$

$$= \sqrt{\frac{186 \text{ Kg}}{6.67}}$$

4) Calculate the gravitational force on a 6.50×10^4 kg that is 4.15×10^6 m above the surface of the Earth?

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^6} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^7} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^7} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^7} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^7} = 1.053 \times 10^7 \text{ m}$$

$$\frac{1}{14.18 \times 10^7} = 1.053 \times 10^7 \text{ m}$$

5) The gravitational force between two objects that are $2.1x10^{-1}$ m apart is $3.2x10^{-6}$ N. If the mass of one object is 55 kg what is the mass of the other object?

$$F_g = \frac{GMm}{v^2}$$

$$M = \frac{F_r r^2}{Gm} = \frac{(3.2 \times 10^{-6})(2.1 \times 10^{-1})^2}{(6.67 \times 10^{-11})(55)}$$

$$= \boxed{38 \text{ kg}}$$

6) If two objects, each with a mass of 2.0x10² kg, produce a gravitational force between them of 3.7x10⁻⁶ N. What is the distance between them?

$$F_{g} = \frac{GMm}{r^{2}}$$

$$r = \int \frac{GMm}{F_{g}}$$

$$= \int \frac{(6.67 \times 10^{-1})(2.0 \times 10^{2})(2.0 \times 10^{2})}{3.7 \times 10^{-6}}$$

$$= \int 0.85 m$$

7) What is the gravitational force acting on a 70.0 kg object standing on the Earth's surface?

$$F_g = mg$$
= (70.0)(9.80)
= $\frac{686 N}{m}$

8) What is the gravitational force on a 35.0 kg object standing on the Earth's surface?

(You can use your answer from #7 to reduce your calculations)

Since
$$G \propto m$$

and $m_z = \frac{1}{2}m_z$
 $G = 343 N$

9) What is the gravitational force on a 70.0 kg that is 6.38x10⁶ m **above** the Earth's surface? (You can use your answer from #7 to reduce your calculations)

$$F_{g_1} = \frac{GM_m}{r^2} = 686N$$

$$F_{g_2} = \frac{GMm}{(2r)^2} = \frac{GMm}{4r^2}$$

$$= \frac{686}{4} = 172N$$

10) Three objects each with a mass of 10.0 kg are placed in a straight line 50.0 cm apart. What is the net gravitational force on the center object due to the other two?

Since
$$M_A = M_C$$

and $r_1 = r_2$
Then $F_{AB} = F_{BC}$
 $\therefore F_{WC} = 0$

11) Three objects A, B, C are placed 50.0 cm apart along a straight line. A and B have a mass of 10.0 kg, while C has a mass of 15.0 kg. What is the net force on B due to A and C?

$$F_{BC} = \frac{Gm_0m_c}{r_2^2} = 4.00 \times 10^{-8} N$$

Worksheet? 2 - Gravitational Field Strength

1) What is the weight of a 25.0 kg object near the surface of the earth?

2) What is the mass of an object if it has a weight of 80.0 N near the earth's surface?

$$F_g = mg$$
 $m = \frac{F_g}{g} = \frac{80.00}{9.80 \, \text{m/s}^2}$
 $= \frac{8.16 \, \text{kg}}{g}$

3) What is the acceleration due to gravity near the surface of the moon if an object that has a mass of 22.0 kg has a weight of 36.0 N near the moon's surface?

$$F_g = mg$$
 $g = \frac{F_g}{m} = \frac{360N}{22.0 kg}$
= (1.64 m/s^2)

4) What is the weight of a 72.0 kg object near the surface of the Moon?

$$F_g = mg = (72.0 \text{kg})(1.64 \text{ m/s}^2)$$

= 118 N

5) What is the mass of an object if it has a weight of 127 N near the earth's surface?

$$f_{\overline{g}} = mg$$

$$M = \frac{f_{\overline{g}}}{g} = \frac{127N}{9.80 \, \text{M/g}} = 13.0 \, \text{kg}$$

6) What is the gravitational field strength at a point 6.38x10⁶ m above earth's surface?

$$\int_{0.38 \times 10^{4} \text{n}}^{16.58 \times 10^{4} \text{n}} \int_{0.38 \times 10^{4} \text{n}}^{16.38 \times 10^{4} \text{n}} \int_{0.38 \times 10^{4} \text$$

7) What is the acceleration due to gravity on the surface of the sun?

$$g = \frac{GM}{r^2} = \frac{(6.67 \times 10^{-11})(1.99 \times 10^{30})}{(6.96 \times 10^{11})^2}$$

$$= \frac{279 \times 10^{30}}{(6.96 \times 10^{11})^2}$$

8) The Earth orbits the Sun at a distance of 1.46x10¹⁰ m from center to center. What is the strength of the Sun's gravitational field at this distance?

Sun's gravitational field at this distance?

$$g = \frac{GM}{r^2} = \frac{(6.67 \times 10^{-1})(1.99 \times 10^{50})}{(1.46 \times 10^{10})^2}$$

$$= 0.622 \text{ m/s}^2$$