\qquad
\qquad
\qquad

Heat

Concept Review

Defining Heat $P E=m g h \quad K E=1 / 2 m \cdot v^{2} \quad M E=P E+K E$

1. A $1.000 \times 10^{3} \mathrm{~kg}$ car is moving at $90.0 \mathrm{~km} / \mathrm{h}(25.0 \mathrm{~m} / \mathrm{s})$ as it exits a freeway. The driver brakes to meet the speed limit of $36.0 \mathrm{~km} / \mathrm{h}(10.0 \mathrm{~m} / \mathrm{s})$.
a. What was the car's kinetic energy on the freeway?
b. What is its kinetic energy after slowing down?
c. Did the internal energy of the car, road, and air increase or decrease in this process? By how much?
d. Was work done by the car brakes and other friction forces in the process? How much?
\qquad
2. A $2.00 \times 10^{2} \mathrm{~kg}$ sled is sliding downhill at a constant speed of $5.00 \mathrm{~m} / \mathrm{s}$ until it passes a tree 20.0 m down.
a. What was the potential energy associated with the sled and the sled's kinetic energy and total mechanical energy at the top of the hill?
b. What were these energies at the bottom of the hill?
c. What was the change in the sled's total energy?
d. What was the change in the internal energy of the sled and its environment? How might that change be observed in the snow?
\qquad
\qquad
\qquad

Temperature and Thermal Equilibrium

1. The temperature at one of the Viking sites on Mars was found to vary daily from $-90.0^{\circ} \mathrm{F}$ to $-5.0^{\circ} \mathrm{C}$. Convert these temperatures to Kelvin.
2. Mercury boils at $357^{\circ} \mathrm{C}$ and freezes at $-38.9^{\circ} \mathrm{C}$.
a. Convert these temperatures to Kelvin.
b. Can a mercury thermometer be used to measure temperatures between $500^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$? between $100^{\circ} \mathrm{C}$ and $200^{\circ} \mathrm{C}$?
\qquad
3. You walk out of a sauna at $45^{\circ} \mathrm{C}$ into a tub in which the water temperature is 309 K .
a. Is your skin initially in thermal equilibrium with the water?
b. Is your bath going to feel cold or warm?
4. Nitrogen becomes a liquid at $-195.8^{\circ} \mathrm{C}$ under atmospheric pressure. Oxygen becomes a liquid at $-183.0^{\circ} \mathrm{C}$.
a. Convert these temperatures to Kelvin.
b. A sealed tank containing a mixture of nitrogen and oxygen is cooled to 82.8 K and maintained under atmospheric pressure. Are the contents now a liquid or a gas? Explain.
