	ning Heat PE=mgh KE=1/2m·v² ME= PE + KE	
1.	1.000×10^3 kg car is moving at 90.0 km/h (25.0 m/s) as it exits a freeway. The drivates to meet the speed limit of 36.0 km/h (10.0 m/s). What was the car's kinetic energy on the freeway?	ver
	What is its kinetic energy after slowing down?	
	Did the internal energy of the car, road, and air increase or decrease in this process how much?	?? By
	Was work done by the car brakes and other friction forces in the process? How mu	ıch?
2.	2.00×10^2 kg sled is sliding downhill at a constant speed of 5.00 m/s until it passes .0 m down.	s a tree
	What was the potential energy associated with the sled and the sled's kinetic energ total mechanical energy at the top of the hill?	y and
	What were these energies at the bottom of the hill?	
	What was the change in the sled's total energy?	
	What was the change in the internal energy of the sled and its environment? How rethat change be observed in the snow?	might

Name: ______ Date: _____

Γε	emperature and Thermal Equilibrium		
1.	The temperature at one of the Viking sites on Mars was found to vary daily from -90.0° F to -5.0° C. Convert these temperatures to Kelvin.		
2.	Mercury boils at 357°C and freezes at –38.9°C.		
	a. Convert these temperatures to Kelvin.		
	b. Can a mercury thermometer be used to measure temperatures between 500°C and 600°C between 100°C and 200°C?		
3.	You walk out of a sauna at 45°C into a tub in which the water temperature is 309 K. a. Is your skin initially in thermal equilibrium with the water?		
	b. Is your bath going to feel cold or warm?		
4.	Nitrogen becomes a liquid at -195.8°C under atmospheric pressure. Oxygen becomes a liquid at -183.0°C.		
	a. Convert these temperatures to Kelvin.		
	b. A sealed tank containing a mixture of nitrogen and oxygen is cooled to 82.8 K and maintained under atmospheric pressure. Are the contents now a liquid or a gate Explain.		

Name: ______ Date: _____