\qquad
\qquad

Harmonic Motion

A pendulum -

Harmonic Motion is any motion that is repetitive (doing the same thing over and over) and caused by a restoring force. Pendulums, bouncing springs, wheels (circular motion), waves, music: these are all harmonic motion.

Restoring force: a force that tries to return an object to equilibrium (center resting position). If a pendulum is disturbed (moved), gravity (restoring force) pulls it back to center. Because it has too much momentum, it goes past center and keeps going back and forth.

Linear motion goes from here to there: one direction.

A car-
linear motion
A bird flying looks like harmonic motion because the wings are going up and down. Actually, it is linear motion because up and down require two different sets of muscles.
Linear motionup uses a different force than down

Parts of Harmonic Motion

Cycle: the repeated portion of the motion; includes all of the steps of the motion.

Period: length of time for one cycle; how long it takes for one repetition.

Frequency: number of cycles per second in hertz (Hz). A hertz is a cycle per second.

From A to C is only half a cycle.

When the pendulum gets back to A it has completed one cycle and starts over.

If it takes 2 seconds for the pendulum to go from A to C and back to A, the pendulum's period is 2 seconds.

Amplitude: the maximum distance or angle the motion moves from its center position. Can be measured in distance (meters, centimeters) or degrees.

Ex: A pendulum has a frequency of 4 Hz . Find its period.	
$\mathrm{f}=4 \mathrm{~Hz}$ $\mathrm{~T}=?$	$\mathrm{~T}=1 / \mathrm{f}$
	$\mathrm{T}=1 / 4 \mathrm{~Hz}$
$\mathrm{~T}=0.25 \mathrm{sec}$	

Ex: A wheel has a period of	
2 seconds. Find its frequency.	
$\mathrm{T}=2 \mathrm{sec}$	$\mathrm{f}=1 / \mathrm{T}$
	$\mathrm{f}=1 / 2 \mathrm{sec}$
	$\mathrm{f}=0.5 \mathrm{~Hz}$

$$
\text { Amplitude }=1 / 2(\text { high }- \text { low })
$$

Graphing Harmonic Motion

On a graph you can see all parts of harmonic motion.

Cycle-one repetition of the motion (top to top, bottom to bottom, etc.).

Period-time for one cycle; time from top to top, etc.

Frequency-how many cycles in one second.

Amplitude-how far the graph goes away from the center (or use the equation: Amplitude $=1 / 2($ high - low $)$

Name:
Period: \qquad

