Graphing Motion

I till cillatics vvo	Kir	ema	atics	WS	
----------------------	-----	-----	-------	----	--

lame _____

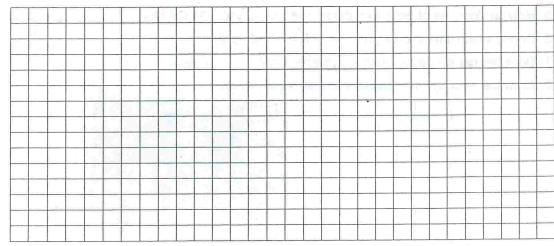
Date	Per	L . mil

1. A car travels at a constant 20 *m/s* for 10 *s*. Fill in the table showing the cars displacement from the origin at the end of each second. Then graph the motion.

t (s)	d (m)
1	
2	
3	74 X
4	
5	
6	
7	
8	
9	
10	

d

Т																								9	
											1				22										
											-														
1					-														Ш				-		-
				_													-								-
÷				-1				-					H					-	÷						1.3
÷		-	-			_					7.				-		-		т		H	-			
÷																									
											Т														
																									4
الله	_											_						-	_		_			_	-
-				-	-	-				-								-							-
+	-				-			-	+			-		+		-		-	_						
-					-							H			+										
								T	T						- 31				T		-		Ţ		
							H				-									7			I		

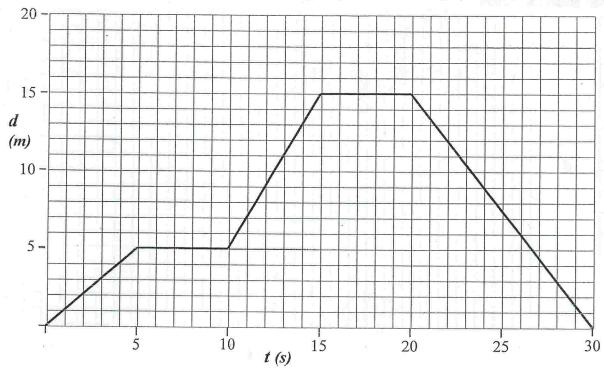

t

- 2. What is the slope of the curve plotted? _____
- 3. How does this compare to the velocity, given, in number 1 above?

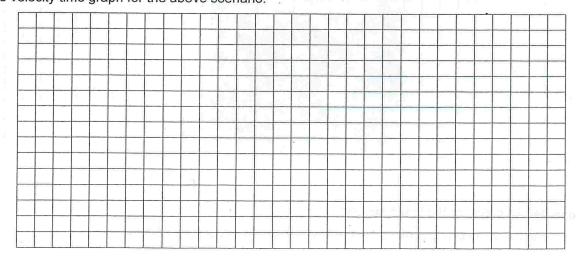
4. Complete the table showing the cars velocity at the end of each second. Then complete the velocity-time plot.

t (s)	v (m/s)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

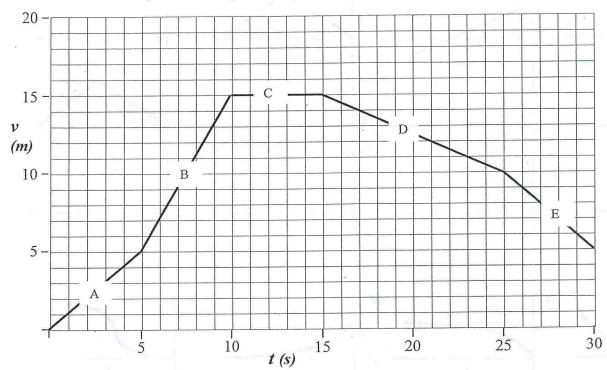
117

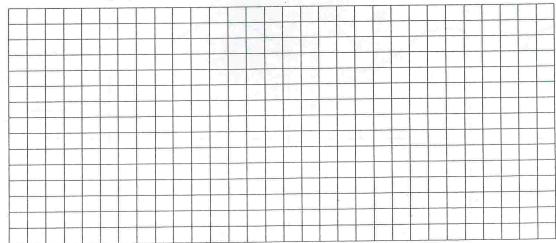


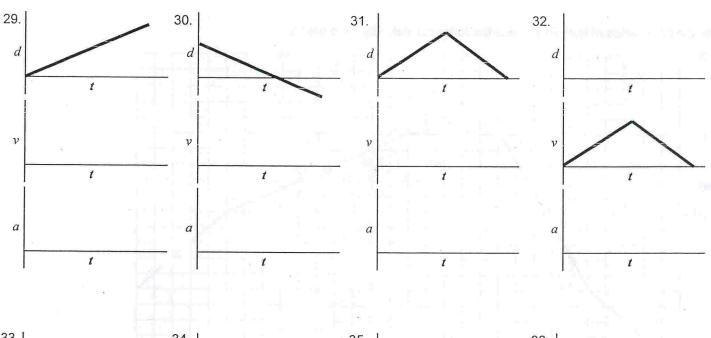
t

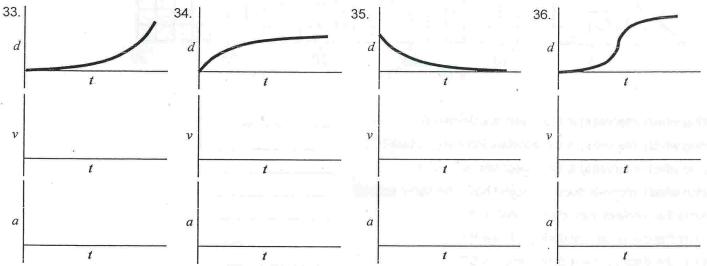

- 5. Find the area under the curve for the first 5 seconds.
- 6. How does this compare to the displacement, for the first 5 seconds, in number 1 above?

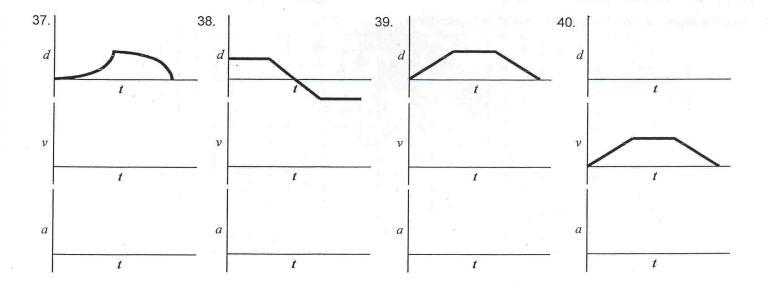
- 7. The slope of the displacement-time graph is
- 8. The slope of the velocity-time graph is
- 9. The area under the acceleration-time graph is
- 10. The area under the velocity-time graph is


Answer the next series of questions using the following displacement-time graph.


- 11. How far does the object travel during the first 5 seconds (1 to 5 s)?
- 12. How far does the object travel during the second 5 seconds (5 to 10 s)?
- 13. How far does the object travel during the third 5 seconds (10 to 15 s)?
- 14. How far does the object travel during the fourth 5 seconds (15 to 20 s)?
- 15. How far does the object travel during the last 10 seconds (20 to 30 s)?
- 16. During which time interval(s) is the object standing still?
- 17. Does the car ever accelerate in this scenario?
- 18. Draw the velocity time graph for the above scenario.


Answer the next series of questions using the following velocity-time graph.




- 19. During which interval(s) is the object accelerating?
- 20. During which interval(s) is the acceleration the greatest?
- 21. During which interval(s) is the object standing still?
- 22. During which intervals does the object have the same speed?
- 23. What is the displacement during interval A?
- 24. What is the displacement during interval B?
- 25. What is the displacement during interval C?
- 26. What is the displacement during interval D?
- 27. What is the displacement during interval E?
- 28. Draw the acceleration-time graph for the above scenario.

Complete the series of graphs: displacement-time, velocity-time, and acceleration-time.

