DEFINING MOTION

Objectives

- *Understand the difference between position, distance, and displacement.
- Understand the difference between speed and velocity.
- Solve problems involving average speed and velocity.
- Calculate distance, displacement, speed, velocity, and acceleration.

Scalars

Scalars are physical quantities with a magnitude (size) only

- Temperature
- Mass
- Time

Vectors

- Vectors are quantities that have magnitude and direction
 - Velocity
 - ***Force**
 - *Momentum

Position

An object's position, in one dimension, can be assigned to a variable on a number scale.

- You can assign the zero point, as well as the positive and negative directions.
- ❖The symbol for position 1D is x.

Distance

- When position changes, an object has traveled some distance. The more position changes, the more distance is traveled.
- Distance is scalar (does not depend on direction), and is measured in meters.

Sample Problem - Distance

*A deer walks 1300 meters east to a creek for a drink. The deer then walks 500 meters west to the berry patch for dinner, before running 300 meters west when startled by a loud raccoon. What **distance** did the deer travel?

Displacement

- Displacement is a vector which describes the straight line from where your starting point to your ending point.
- *Displacement $\Delta x (x_f x_i)$ is also measured in meters.

Sample Problem - Displacement

*A deer walks 1300 meters east to a creek for a drink. The deer then walks 500 meters west to the berry patch for dinner, before running 300 meters west when startled by a loud raccoon. What is the deer's **displacement**?

Average Speed

Average Speed is the rate at which distance is traveled, and is scalar.

$$v = \frac{x}{t}$$

- Average speed is scalar, and is measured in meters/second.
- Speed is Scalar

Average Velocity

Average Velocity is the rate at which displacement changes, and is a vector.

$$v = \frac{x_f - x_i}{t} = \frac{\Delta x}{t}$$

- Average velocity is also measured in meters/second.
- ♦ Velocity is a Vector.

Sample Problem- Avg. Velocity

A deer walks 1300 meters east to a creek for a drink. The deer then walks 500 meters west to the berry patch for dinner, before running 300 meters west when startled by a loud raccoon. What is the deer's average velocity if the entire trip took 600 seconds?

Chuck the Hungry Squirrel

Chuck the hungry squirrel travels 4m east and 3m north in search of an acorn. The entire trip takes him 20 seconds.

Find:

- Chuck's distance traveled
- Chuck's displacement
- Chuck's average speed
- Chuck's average velocity

Acceleration

*Acceleration is the rate at which velocity changes.

$$a = \frac{\Delta v}{t}$$

- Acceleration is a vector.
- ♦ Units are m/s/s, or m/s².

Acceleration Problem

Monty the Monkey accelerates from rest to a velocity of 9 m/s in a time span of 3 seconds. Calculate Monty's acceleration.

