CONSERVATION OF ENERGY Mr. Drouet

OBJECTIVES

•Apply conservation of energy to analyze energy transitions and transformations in a system.

MECHANICAL ENERGY

- •Both potential energy and kinetic energy are forms of mechanical energy.
- They often act together on objects at the same time.
- Let's try to see how they relate to each other.

MECHANICAL ENERGY

- Lets think of a book being dropped off a building.
- At the top before the book is dropped, what is it's PE and KE?
 - PE = some value, KE = 0

- As the book falls how do they change.
 - Height decreases, so PE decreases
 - Speed increases, so KE increases

MECHANICAL ENERGY

- It seems that as PE decreases, KE increases.
- What happens in reverse?
- When you throw a ball into the air, it initially has no PE and a lot of KE. As it goes higher the PE increases, and the ball slows down so the KE decreases.
- Take a look at the skater.

LAW OF CONSERVATION OF ENERGY

o"Energy cannot be created or destroyed... it can only be changed."

- $_{\circ}$ Mechanical Energy = KE + PE_g + Pe_s
- Conservation Laws
 - Total Energy
 - Mechanical Energy (neglects friction)

CONSERVATION OF ME

 \circ ME = KE + PE = constant in closed system.

$$\circ$$
ME _{initial} = ME _{final}

$$\circ$$
 PE _{initial} + KE _{initial} = PE _{final} + KE _{final}

• Lets take a look at a simple pendulum.

ME SAMPLES

- Turn to page 185 in textbook.
- We will work questions 1,2, and 4.

CONSERVATION OF ME SAMPLE 1

•A bird if flying with a speed of 18.0 m/s over water when it accidentally drops a 2.00 kg fish. If the altitude of the bird is 5.40 m and friction is disregarded, what is the speed of the fish when it hits the water?

ME SAMPLE 2

•A 755 N diver drops from a board of 10.0 m above the water's surface. Find the diver's speed 5.00 above the water's surface. Then find the diver's speed just before striking the water.

ME SAMPLE 3

•An Olympic runner leaps over a hurdle. If the runner's initial vertical speed is 2.2 m/s, how much will the runner's center of mass be raised during the jump?

ME SAMPLE 4

• The work done in accelerating an object along a frictionless horizontal surface is equal to the change in the object's

- a) Momentum
- b) Velocity
- c) Potential energy
- d) Kinetic energy