Name:	Class:	Date:	

Assessment

Momentum and Collisions

Section Quiz: Conservation of Momentum

Write the letter of the correct answer in the space provided.	
---	--

1. A batter hits a baseball back to the pitcher at the same speed as the
pitch. Which of the following is true?
a. The momentum of the ball is the same before and after the batter hits
the ball.
b. The magnitude of the ball's momentum is greater after the batter hits the ball.
c. The magnitude of the ball's momentum is less after the batter hits the ball.
d. The magnitude of the ball's momentum is the same before and after the batter hits the ball.
2. A small marble collides with a billiard ball that is initially at rest.

- 2. A small marble collides with a billiard ball that is initially at rest Which of the following is true?
 - a. The momentum of each object increases.
 - b. The momentum of each object decreases.
 - c. The momentum of the billiard ball increases, and the momentum of the marble decreases.
 - d. The total momentum before and after the collision is zero.
- ____ 3. When two ice skaters initially at rest push off one another, their final momenta are
 - a. equal in magnitude and direction.
 - b. equal in magnitude and opposite in direction.
 - c. in the same direction but of different magnitudes
 - d. in opposite directions and possibly of different magnitudes.
 - 4. When two objects interact in an isolated system,
 - a. the momentum of each object is conserved.
 - b. the total momentum of the system is zero.
 - c. the total momentum is conserved only if the objects move in opposite directions.
 - d. the total momentum is always conserved.
 - 5. Which of the following expresses the law of conservation of momentum?
 - a. The total momentum of an isolated system is zero.
 - b. The total momentum of any system always remains constant.
 - c. Every object in an isolated system maintains a constant momentum.
 - d. The total momentum of an isolated system remains constant regardless of the forces between the objects in the system.

Name: _	Class:Date:
Mom	entum and Collisions <i>continued</i>
	6. Conservation of momentum follows froma. Newton's first law.b. Newton's second law.c. Newton's third law.d. the law of conservation of energy.
	 7. A billiard ball hits the edge of another billiard ball that is initially at rest. The second ball moves off at an angle. Which of the following is true? a. The momentum of the first ball doesn't change. b. The momentum of the second ball doesn't change. c. The total momentum of the system increases. d. The momentum lost by the first ball is gained by the second ball.
	 8. A croquet ball moving at 2.0 m/s strikes another ball of equal mass. The first ball stops moving after the collision. What is the velocity of the second ball after the collision? a2.0 m/s b. 0 m/s c. 2.0 m/s d. 4.0 m/s
	scribe the changes in momentum that take place when two billiard balls of all mass but moving at different speeds collide head-on.
_	
_	
_	
	55 kg boy running at 2.0 m/s jumps onto a 2.0 kg skateboard. Calculate the al velocity of the boy and the skateboard.

© Houghton Mifflin Harcourt Publishing Company