\qquad
\qquad
\qquad

Chapter 5 Review

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.
\qquad 1. A force does work on an object if a component of the force
a. is perpendicular to the displacement of the object.
b. is parallel to the displacement of the object.
c. perpendicular to the displacement of the object moves the object along a path that returns the object to its starting position.
d. parallel to the displacement of the object moves the object along a path that returns the object to its starting position.
2. What is the common formula for work?
a. $\quad W=F d(\sin \theta)$
b. $\quad W=F d$
c. $\quad W=F d^{2}$
d. $\quad W=F^{2} d$
\qquad 3. Work is done when
a. the displacement is not zero.
b. the displacement is zero.
c. the force is zero.
d. the force and displacement are perpendicular.
\qquad 4. A $1.00 \times 10^{3} \mathrm{~kg}$ sports car accelerates from rest to $25.0 \mathrm{~m} / \mathrm{s}$ in 7.50 s . What is the average power output of the automobile engine?
a. $\quad 20.8 \mathrm{~kW}$
b. $\quad 30.3 \mathrm{~kW}$
c. $\quad 41.7 \mathrm{~kW}$
d. $\quad 52.4 \mathrm{~kW}$
\qquad 5. The more powerful the motor is,
a. the longer the time interval for doing the work is.
b. the shorter the time interval for doing the work is.
c. the greater the ability to do the work is.
d. the shorter the workload is.
\qquad 6. The magnitude of the component of the force that does the work is 43.0 N . How much work is done on a bookshelf being pulled 5.00 m at an angle of 37.0° from the horizontal?
a. 172 J
b. 215 J
c. 129 J
d. 792 J
7. A worker pushes a wheelbarrow with a horizontal force of 50.0 N over a level distance of 5.0 m . If a frictional force of 43 N acts on the wheelbarrow in a direction opposite to that of the worker, what net work is done on the wheelbarrow?
a. 250 J
b. 0.0 J
c. 35 J
d. 10.0 J
8. A hill is 100 m long and makes an angle of 12° with the horizontal. As a 50 kg jogger runs up the hill, how much work does gravity do on the jogger?
a. 50000 J
b. 10000 J
c. -10000 J
d. 0.0 J
\qquad 9. A child moving at constant velocity carries a 2 N ice-cream cone 1 m across a level surface. What is the net work done on the ice-cream cone?
a. 0 J
b. 0.5 J
c. 2 J
d. 20 J
10. A construction worker pushes a wheelbarrow 5.0 m with a horizontal force of 50.0 N . How much work is done by the worker on the wheelbarrow?
a. 10 J
b. 1250 J
c. 250 J
d. 55 J
11. A horizontal force of 200 N is applied to move a 55 kg television set across a 10 m level surface. What is the work done by the 200 N force on the television set?
a. 4000 J
b. $\quad 5000 \mathrm{~J}$
c. 2000 J
d. 6000 J
12. A flight attendant pulls a 50.0 N flight bag a distance of 250.0 m along a level airport floor at a constant speed. A 30.0 N force is exerted on the bag at an angle of 50.0° above the horizontal. How much work is done on the flight bag?
a. $\quad 12500 \mathrm{~J}$
b. 7510 J
c. 4820 J
d. 8040 J
\qquad 13. Which of the following energy forms is the sum of kinetic energy and all forms of potential energy?
a. total energy
c. nonmechanical energy
b. sum (Σ) energy
d. mechanical energy
14. Which of the following energy forms is involved in winding a pocket watch?
a. electrical energy
c. gravitational potential energy
b. nonmechanical energy
d. elastic potential energy
15. Which of the following energy forms is NOT involved in hitting a tennis ball?
a. kinetic energy
c. gravitational potential energy
b. chemical potential energy
d. elastic potential energy
16. Which of the following energy forms is involved in a pencil falling from a desk?
a. kinetic energy
b. nonmechanical energy
c. gravitational potential energy
d. elastic potential energy and kinetic energy
17. A 3.00 kg toy falls from a height of 10.0 m . Just before hitting the ground, what will be its kinetic energy? (Disregard air resistance. $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.)
a. $\quad 98.0 \mathrm{~J}$
b. $\quad 0.98 \mathrm{~J}$
c. 29.4 J
d. 294 J
18. If the only force acting on an object is friction during a given physical process, which of the following assumptions must be made in regard to the object's kinetic energy?
a. The kinetic energy decreases.
b. The kinetic energy increases.
c. The kinetic energy remains constant.
d. The kinetic energy decreases and then increases.
19. What is the kinetic energy of a 0.135 kg baseball thrown at $40.0 \mathrm{~m} / \mathrm{s}$?
a. $\quad 54.0 \mathrm{~J}$
b. $\quad 87.0 \mathrm{~J}$
c. $\quad 108 \mathrm{~J}$
d. 216 J
20. If both the mass and the velocity of a ball are tripled, the kinetic energy of the ball is increased by a factor of
a. 3 .
b. 6 .
c. 9 .
d. 27.
21. Which of the following energy forms is associated with an object in motion?
a. potential energy
c. nonmechanical energy
b. elastic potential energy
d. kinetic energy
22. Which of the following energy forms is associated with an object due to its position?
a. potential
c. total
b. positional
d. kinetic
23. The main difference between kinetic energy and potential energy is that
a. kinetic energy involves position and potential energy involves motion.
b. kinetic energy involves motion and potential energy involves position.
c. although both energies involve motion, only kinetic involves position.
d. although both energies involve position, only potential involves motion.
24. Which of the following energy forms is associated with an object due to its position relative to Earth?
a. potential energy
c. gravitational potential energy
b. elastic potential energy
d. kinetic energy
25. Which of the following energy forms is stored in any compressed or stretched object?
a. nonmechanical energy
c. gravitational potential energy
b. elastic potential energy
d. kinetic energy
26. The equation for determining gravitational potential energy is $P E_{g}=m g h$. Which factor(s) in this equation is (are) NOT a property of an object?
a. g
c. m
b. h
d. both g and h
27. Which of the following parameters does not express how resistant a spring is to being compressed or stretched?
a. compression distance
c. spring constant
b. relaxed length
d. stretching distance
28. Which form of energy is involved in weighing fruit on a spring scale?
a. kinetic energy
c. gravitational potential energy
b. nonmechanical energy
d. elastic potential energy
29. Which of the following energy forms is associated with an object's interaction with the environment?
a. potential energy
c. mechanical energy
b. kinetic energy
d. nonmechanical energy
30. As an object is lowered into a deep hole in the ground, which of the following assumptions must be made in regard to the object's potential energy?
a. The potential energy increases.
b. The potential energy decreases.
c. The potential energy remains constant.
d. The potential energy increases and then decreases.
31. A 40.0 N crate is pulled up a 5.0 m inclined plane at a constant velocity. If the plane is inclined at an angle of 37° to the horizontal and there is a constant force of friction of 10.0 N between the crate and the surface, what is the net gain in potential energy by the crate?
a. 120 J
b. -120 J
c. 210 J
d. -210 J
32. A 0.002 kg coin, which has zero potential energy at rest, is dropped into a 10.0 m well. After the coin comes to a stop in the mud, what is its potential energy?
a. $\quad 0.000 \mathrm{~J}$
b. 0.196 J
c. -0.196 J
d. 0.020 J
33. An 80.0 kg climber with a 20.0 kg pack climbs 8848 m to the top of Mount Everest. What is the climber's potential energy?
a. $\quad 6.94 \times 10^{6}$ J
b. $4.16 \times 10^{6} \mathrm{~J}$
c. $2.47 \times 10^{6} \mathrm{~J}$
d. 1.00×10^{6} J
34. A $5.00 \times 10^{2} \mathrm{~N}$ crate is at the top of a 5.00 m ramp, which is inclined at 20.0° with the horizontal. What is its potential energy? ($g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.)
a. 855 J
b. 2350 J
c. 815 J
d. 8390 J
35. In the presence of frictional force,
a. nonmechanical energy is negligible and mechanical energy is no longer conserved.
b. nonmechanical energy is negligible and mechanical energy is conserved.
c. nonmechanical energy is no longer negligible and mechanical energy is conserved.
d. nonmechanical energy is no longer negligible and mechanical energy is no longer conserved.
36. Why doesn't the principle of mechanical energy conservation hold in situations when frictional forces are present?
a. Kinetic energy is not simply converted to a form of potential energy.
b. Potential energy is simply converted to a form of gravitational energy.
c. Chemical energy is not simply converted to electrical energy.
d. Kinetic energy is simply converted to a form of gravitational energy.
37. Which of the following are examples of conservable quantities?
a. potential energy and length
c. mechanical energy and mass
b. mechanical energy and length
d. kinetic energy and mass
38. A 16.0 kg child on roller skates, initially at rest, rolls 2.0 m down an incline at an angle of 20.0° with the horizontal. If there is no friction between incline and skates, what is the kinetic energy of the child at the bottom of the incline? $\left(g=9.81 \mathrm{~m} / \mathrm{s}^{2}.\right)$
a. 210 J
b. 610 J
c. 11 J
d. 110 J
39. Old Faithful geyser in Yellowstone National Park shoots water every hour to a height of 40.0 m . With what velocity does the water leave the ground? (Disregard air resistance. $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.)
a. $\quad 7.00 \mathrm{~m} / \mathrm{s}$
b. $\quad 14.0 \mathrm{~m} / \mathrm{s}$
c. $\quad 19.8 \mathrm{~m} / \mathrm{s}$
d. $\quad 28.0 \mathrm{~m} / \mathrm{s}$
40. A pole vaulter clears 6.00 m . With what velocity does the vaulter strike the mat in the landing area?
(Disregard air resistance. $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.)
a. $\quad 2.70 \mathrm{~m} / \mathrm{s}$
b. $\quad 5.40 \mathrm{~m} / \mathrm{s}$
c. $\quad 10.8 \mathrm{~m} / \mathrm{s}$
d. $\quad 21.6 \mathrm{~m} / \mathrm{s}$
41. A bobsled zips down an ice track starting at 150 m vertical distance up the hill. Disregarding friction, what is the velocity of the bobsled at the bottom of the hill? $\left(g=9.81 \mathrm{~m} / \mathrm{s}^{2}.\right)$
a. $\quad 27 \mathrm{~m} / \mathrm{s}$
b. $\quad 36 \mathrm{~m} / \mathrm{s}$
c. $45 \mathrm{~m} / \mathrm{s}$
d. $54 \mathrm{~m} / \mathrm{s}$
42. A professional skier starts from rest and reaches a speed of $56 \mathrm{~m} / \mathrm{s}$ on a ski slope 30.0° above the horizontal. Using the work-kinetic energy theorem and disregarding friction, find the minimum distance along the slope the skier would have to travel in order to reach this speed.
a. $\quad 110 \mathrm{~m}$
b. $\quad 160 \mathrm{~m}$
c. 320 m
d. 640 m
43. A 40.0 N crate starting at rest slides down a rough 6.0 m long ramp inclined at 30.0° with the horizontal. The force of friction between the crate and ramp is 6.0 N . Using the work-kinetic energy theorem, find the velocity of the crate at the bottom of the incline.
a. $\quad 8.7 \mathrm{~m} / \mathrm{s}$
b. $\quad 3.3 \mathrm{~m} / \mathrm{s}$
c. $\quad 4.5 \mathrm{~m} / \mathrm{s}$
d. $\quad 6.4 \mathrm{~m} / \mathrm{s}$
44. A 15.0 kg crate, initially at rest, slides down a ramp 2.0 m long and inclined at an angle of 20.0° with the horizontal. Using the work-kinetic energy theorem and disregarding friction, find the velocity of the crate at the bottom of the ramp. ($\left.g=9.81 \mathrm{~m} / \mathrm{s}^{2}.\right)$
a. $\quad 6.1 \mathrm{~m} / \mathrm{s}$
b. $\quad 3.7 \mathrm{~m} / \mathrm{s}$
c. $\quad 9.7 \mathrm{~m} / \mathrm{s}$
d. $\quad 8.3 \mathrm{~m} / \mathrm{s}$
45. A parachutist with a mass of 50.0 kg jumps out of an airplane at an altitude of $1.00 \times 10^{3} \mathrm{~m}$. After the parachute deploys, the parachutist lands with a velocity of $5.00 \mathrm{~m} / \mathrm{s}$. Using the work-kinetic energy theorem, find the energy that was lost to air resistance during this jump. ($g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.)
a. 49300 J
b. 98800 J
c. 198000 J
d. 489000 J
46. A horizontal force of $2.00 \times 10^{2} \mathrm{~N}$ is applied to a 55.0 kg cart across a 10.0 m level surface, accelerating it $2.00 \mathrm{~m} / \mathrm{s}^{2}$. Using the work-kinetic energy theorem, find the force of friction that slows the motion of the cart? (Disregard air resistance. $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.)
a. $\quad 110 \mathrm{~N}$
b. $\quad 90.0 \mathrm{~N}$
c. $\quad 80.0 \mathrm{~N}$
d. $\quad 70.0 \mathrm{~N}$
47. A child riding a bicycle has a total mass of 40.0 kg . The child approaches the top of a hill that is 10.0 m high and 100.0 m long at $5.0 \mathrm{~m} / \mathrm{s}$. If the force of friction between the bicycle and the hill is 20.0 N , what is the child's velocity at the bottom of the hill? (Disregard air resistance. $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.)
a. $\quad 5.0 \mathrm{~m} / \mathrm{s}$
b. $\quad 10.0 \mathrm{~m} / \mathrm{s}$
c. $\quad 11 \mathrm{~m} / \mathrm{s}$
d. The child stops before reaching the bottom.
48. Which of the following is the rate at which energy is transferred?
a. potential energy
c. mechanical energy
b. kinetic energy
d. power
49. Which of the following equations is NOT an equation for power?
a. $\quad P=F \frac{d}{\Delta t}$
b. $\quad P=\frac{W}{\Delta t}$
c. $P=F v$
d. $\quad P=\frac{F v}{\Delta t}$
50. What is the average power supplied by a 60.0 kg secretary running up a flight of stairs rising vertically 4.0 m in 4.2 s ?
a. $\quad 380 \mathrm{~W}$
b. 560 W
c. $\quad 610 \mathrm{~W}$
d. $\quad 670 \mathrm{~W}$
51. What is the average power output of a weight lifter who can lift 250 kg 2.0 m in 2.0 s ?
a. $\quad 5.0 \times 10^{2} \mathrm{~W}$
b. $\quad 2.5 \mathrm{~kW}$
c. $\quad 4.9 \mathrm{~kW}$
d. $\quad 9.8 \mathrm{~kW}$
52. A jet engine develops $1.0 \times 10^{5} \mathrm{~N}$ of thrust to move an airplane forward at a speed of $9.0 \times 10^{2} \mathrm{~km} / \mathrm{h}$. What is the power output of the engine?
a. $\quad 550 \mathrm{~kW}$
b. $\quad 1.0 \mathrm{MW}$
c. 25 MW
d. 5.0 MW
53. Water flows over a section of Niagara Falls at a rate of $1.20 \times 10^{6} \mathrm{~kg} / \mathrm{s}$ and falls 50.0 m . What is the power of the waterfall?
a. 589 MW
b. 294 MW
c. $\quad 147 \mathrm{MW}$
d. $\quad 60.0 \mathrm{MW}$

